Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
JHEP Rep ; 5(5): 100691, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37153687

RESUMO

Background & Aims: ß-catenin is a well-known effector of the Wnt pathway, and a key player in cadherin-mediated cell adhesion. Oncogenic mutations of ß-catenin are very frequent in paediatric liver primary tumours. Those mutations are mostly heterozygous, which allows the co-expression of wild-type (WT) and mutated ß-catenins in tumour cells. We investigated the interplay between WT and mutated ß-catenins in liver tumour cells, and searched for new actors of the ß-catenin pathway. Methods: Using an RNAi strategy in ß-catenin-mutated hepatoblastoma (HB) cells, we dissociated the structural and transcriptional activities of ß-catenin, which are carried mainly by WT and mutated proteins, respectively. Their impact was characterised using transcriptomic and functional analyses. We studied mice that develop liver tumours upon activation of ß-catenin in hepatocytes (APCKO and ß-cateninΔexon3 mice). We used transcriptomic data from mouse and human HB specimens, and used immunohistochemistry to analyse samples. Results: We highlighted an antagonistic role of WT and mutated ß-catenins with regard to hepatocyte differentiation, as attested by alterations in the expression of hepatocyte markers and the formation of bile canaliculi. We characterised fascin-1 as a transcriptional target of mutated ß-catenin involved in tumour cell differentiation. Using mouse models, we found that fascin-1 is highly expressed in undifferentiated tumours. Finally, we found that fascin-1 is a specific marker of primitive cells including embryonal and blastemal cells in human HBs. Conclusions: Fascin-1 expression is linked to a loss of differentiation and polarity of hepatocytes. We present fascin-1 as a previously unrecognised factor in the modulation of hepatocyte differentiation associated with ß-catenin pathway alteration in the liver, and as a new potential target in HB. Impact and implications: The FSCN1 gene, encoding fascin-1, was reported to be a metastasis-related gene in various cancers. Herein, we uncover its expression in poor-prognosis hepatoblastomas, a paediatric liver cancer. We show that fascin-1 expression is driven by the mutated beta-catenin in liver tumour cells. We provide new insights on the impact of fascin-1 expression on tumour cell differentiation. We highlight fascin-1 as a marker of immature cells in mouse and human hepatoblastomas.

2.
EMBO Mol Med ; 14(5): e14649, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35373916

RESUMO

Fragile X syndrome (FXS) is the most frequent form of familial intellectual disability. FXS results from the lack of the RNA-binding protein FMRP and is associated with the deregulation of signaling pathways downstream of mGluRI receptors and upstream of mRNA translation. We previously found that diacylglycerol kinase kappa (DGKk), a main mRNA target of FMRP in cortical neurons and a master regulator of lipid signaling, is downregulated in the absence of FMRP in the brain of Fmr1-KO mouse model. Here we show that adeno-associated viral vector delivery of a modified and FMRP-independent form of DGKk corrects abnormal cerebral diacylglycerol/phosphatidic acid homeostasis and FXS-relevant behavioral phenotypes in the Fmr1-KO mouse. Our data suggest that DGKk is an important factor in FXS pathogenesis and provide preclinical proof of concept that its replacement could be a viable therapeutic strategy in FXS.


Assuntos
Síndrome do Cromossomo X Frágil , Animais , Diacilglicerol Quinase/genética , Diacilglicerol Quinase/metabolismo , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Síndrome do Cromossomo X Frágil/terapia , Camundongos , Camundongos Knockout
3.
Eur J Med Genet ; 63(4): 103770, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31536829

RESUMO

High-throughput sequencing technologies performed in the clinical setting have the potential to reveal diverse genetic information. Whether it is initially targeted or unsolicited, strictly medical or not, or even information on a carrier status as part of preconception screening, access to genetic information needs to be managed. The aim of the current study was to gather potential attitudes of various stakeholders towards the sharing of genetic information from next-generation sequencing, and more specifically towards incidental findings, predictive findings, non-medical information and carrier status. Answers from a total number of 1631 individuals belonging to four different groups (45 molecular geneticists, 65 genetic counselors, 56 medical advisors to the state insurance plan, and 1465 university students) were collected through online questionnaires. Overall, the study reflects preferences towards the return of health risks related to serious diseases when effective treatment is available and information on reproductive risks. The importance of the perceived medical utility, both for disease prevention and treatment, was the main distinguishing feature. Attitudes from genetic health professionals were found more reluctant to receive a wide range of information. Hands-on experience with the practice of genetic testing is likely to influence perception of the utility of the genetic information that should be delivered. At the same time, perceptions of preconception genetic carrier screening brought out less differences between participants. Better understanding of the underlying interest in genomic information and thorough education on its value and usage are key elements to the adoption of future guidelines and policy that respect bioethical principles.


Assuntos
Pessoal de Saúde/psicologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Achados Incidentais , Disseminação de Informação/ética , Erros Inatos do Metabolismo/diagnóstico , Pesquisadores/psicologia , Estudantes/psicologia , Adolescente , Adulto , Idoso , Atitude , Feminino , França/epidemiologia , Triagem de Portadores Genéticos , Aconselhamento Genético/métodos , Testes Genéticos , Genoma Humano , Humanos , Masculino , Erros Inatos do Metabolismo/epidemiologia , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/psicologia , Pessoa de Meia-Idade , Adulto Jovem
4.
Hepatol Commun ; 3(9): 1205-1220, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31497742

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a metabolic disorder due to increased accumulation of fat in the liver and in many cases to enhanced inflammation. Although the contribution of inflammation in the pathogenesis of NAFLD is well established, the cytokines that are involved and how they influence liver transformation are still poorly characterized. In addition, with other modifiers, inflammation influences NAFLD progression to liver cirrhosis and hepatocellular carcinoma, demonstrating the need to find new molecular targets with potential future therapeutic applications. We investigated gene signatures in 38 liver biopsies from patients with NAFLD and obesity who had received bariatric surgery and compared these to 10 control patients who had received a cholecystectomy, using DNA microarray technology. A subset of differentially expressed genes was then validated on a larger cohort of 103 patients who had received bariatric surgery for obesity; data were thoroughly analyzed in terms of correlations with NAFLD pathophysiological parameters. Finally, the impact of a specific cytokine, interleukin-32 (IL32), was addressed on primary human hepatocytes (PHHs). Transcript analysis revealed an up-regulation of proinflammatory cytokines IL32, chemokine (C-X-C motif) ligand 9 (CXCL9), and CXCL10 and of ubiquitin D (UBD), whereas down-regulation of insulin-like growth factor-binding protein 2 (IGFBP2) and hypoxanthine phosphoribosyltransferase 1 (HPRT1) was reported in patients with NAFLD. Moreover, IL32, which is the major deregulated gene, correlated with body mass index (BMI), waist circumference, NAFLD activity score (NAS), aminotransferases (alanine aminotransferase [ALAT] and aspartate aminotransferase [ASAT]), and homeostasis model assessment of insulin resistance (HOMA-IR) index in patients. Consistent with an instrumental role in the pathophysiology of NAFLD, treatment of control human hepatocytes with recombinant IL32 leads to insulin resistance, a hallmark metabolic deregulation in NAFLD hepatocytes. Conclusion: IL32 has a critical role in the pathogenesis of NAFLD and could be considered as a therapeutic target in patients.

5.
PLoS One ; 14(8): e0220244, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31374089

RESUMO

Cattle with subclinical endometritis (SCE) are sub-fertile and diagnosing subclinical uterine disease remains a challenge. The hypothesis for this study was that endometrial inflammation is reflected in mRNA expression patterns of peripheral blood leucocytes. Transcriptome profiles were evaluated in healthy cows and in cows with SCE using circulating white blood cells (WBC) and endometrial biopsy samples collected from the same animals at 45-55 days postpartum. Bioinformatic analyses of microarray-based transcriptional data identified gene profiles associated with distinct biological functions in circulating WBC and endometrium. In circulating WBC, SCE promotes a pro-inflammatory environment, whereas functions related to tissue remodeling are also affected in the endometrium. Nineteen differentially expressed genes associated with SCE were common to both circulating WBC and the endometrium. Among these genes, transcript abundance of immune factors C3, C2, LTF, PF4 and TRAPPC13 were up-regulated in SCE cows at 45-55 days postpartum. Moreover, mRNA expression of C3, CXCL8, LTF, TLR2 and TRAPPC13 was temporally regulated during the postpartum period in circulating WBC of healthy cows compared with SCE cows. This observation might indicate an advantageous modulation of the immune system in healthy animals. The transcript abundance of these genes represents a potential source of indicators for postpartum uterine health.


Assuntos
Doenças dos Bovinos/sangue , Doenças dos Bovinos/genética , Indústria de Laticínios , Endometrite/veterinária , Endométrio/metabolismo , Transcriptoma , Animais , Bovinos , Endometrite/sangue , Endometrite/genética , Feminino , Leucócitos/metabolismo , RNA Mensageiro/sangue , RNA Mensageiro/genética
6.
Nat Commun ; 10(1): 1740, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30988355

RESUMO

Cells dedicate significant energy to build proteins often organized in multiprotein assemblies with tightly regulated stoichiometries. As genes encoding subunits assembling in a multisubunit complex are dispersed in the genome of eukaryotes, it is unclear how these protein complexes assemble. Here, we show that mammalian nuclear transcription complexes (TFIID, TREX-2 and SAGA) composed of a large number of subunits, but lacking precise architectural details are built co-translationally. We demonstrate that dimerization domains and their positions in the interacting subunits determine the co-translational assembly pathway (simultaneous or sequential). The lack of co-translational interaction can lead to degradation of the partner protein. Thus, protein synthesis and complex assembly are linked in building mammalian multisubunit complexes, suggesting that co-translational assembly is a general principle in mammalian cells to avoid non-specific interactions and protein aggregation. These findings will also advance structural biology by defining endogenous co-translational building blocks in the architecture of multisubunit complexes.


Assuntos
Multimerização Proteica , Subunidades Proteicas/metabolismo , Exodesoxirribonucleases/química , Exodesoxirribonucleases/metabolismo , Células HeLa , Humanos , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Domínios Proteicos , Dobramento de Proteína , Subunidades Proteicas/química , Fatores Associados à Proteína de Ligação a TATA/química , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/química , Fator de Transcrição TFIID/metabolismo
7.
Stat Methods Med Res ; 28(8): 2276-2291, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-29560792

RESUMO

High-throughput biological technologies are routinely used to generate gene expression profiling or cytogenetics data. To achieve high performance, methods available in the literature become more specialized and often require high computational resources. Here, we propose a new versatile method based on the data-ordering rank values. We use linear algebra, the Perron-Frobenius theorem and also extend a method presented earlier for searching differentially expressed genes for the detection of recurrent copy number aberration. A result derived from the proposed method is a one-sample Student's t-test based on rank values. The proposed method is to our knowledge the only that applies to gene expression profiling and to cytogenetics data sets. This new method is fast, deterministic, and requires a low computational load. Probabilities are associated with genes to allow a statistically significant subset selection in the data set. Stability scores are also introduced as quality parameters. The performance and comparative analyses were carried out using real data sets. The proposed method can be accessed through an R package available from the CRAN (Comprehensive R Archive Network) website: https://cran.r-project.org/web/packages/fcros .


Assuntos
Análise Citogenética/métodos , Interpretação Estatística de Dados , Perfilação da Expressão Gênica/métodos , Análise em Microsséries/métodos , Algoritmos , Humanos
8.
Sci Rep ; 8(1): 16857, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30442984

RESUMO

Viticulture is of high socio-economic importance; however, its prevalent practices severely impact the environment and human health, and criticisms from society are raising. Vine managements systems are further challenged by climatic changes. Of the 8 million hectares grown worldwide, conventional and organic practices cover 90% and 9% of acreage, respectively. Biodynamic cultivation accounts for 1%. Although economic success combined with low environmental impact is widely claimed by biodynamic winegrowers from California, to South Africa, and France, this practice is still controversial in viticulture and scientific communities. To rethink the situation, we encouraged stakeholders to confront conventional and biodynamic paradigms in a Participative-Action-Research. Co-designed questions were followed up by holistic comparison of conventional and biodynamic vineyard managements. Here we show that the amplitude of plant responses to climatic threats was higher in biodynamic than conventional management. The same stood true for seasonal trends and pathogens attacks. This was associated with higher expression of silencing and immunity genes, and higher anti-oxidative and anti-fungal secondary metabolite levels. This suggests that sustainability of biodynamic practices probably relies on fine molecular regulations. Such knowledge should contribute to resolving disagreements between stakeholders and help designing the awaited sustainable viticulture at large.


Assuntos
Clima , Agricultura Orgânica/métodos , Vitis/microbiologia , Vitis/virologia , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genes de Plantas , Metaboloma , Imunidade Vegetal/genética , Folhas de Planta/metabolismo , Metabolismo Secundário/genética , Solo , Estresse Fisiológico/genética , Vitis/genética
9.
Toxicol Appl Pharmacol ; 356: 54-64, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30012374

RESUMO

The number of workers potentially exposed to nanoparticles (NPs) during industrial processes is increasing, although the toxicological properties of these compounds still need to be fully characterized. As NPs may be aerosolized during industrial processes, inhalation represents their main route of occupational exposure. Here, the short- and long-term pulmonary toxicological properties of titanium dioxide were studied, using conventional and molecular toxicological approaches. Fischer 344 rats were exposed to 10 mg/m3 of a TiO2 nanostructured aerosol (NSA) by nose-only inhalation for 6 h/day, 5 days/week for 4 weeks. Lung samples were collected up to 180 post-exposure days. Biochemical and cytological analyses of bronchoalveolar lavage (BAL) showed a strong inflammatory response up to 3 post-exposure days, which decreased overtime. In addition, gene expression profiling revealed overexpression of genes involved in inflammation that was maintained 6 months after the end of exposure (long-term response). Genes involved in oxidative stress and vascular changes were also up-regulated. Long-term response was characterized by persistent altered expression of a number of genes up to 180 post-exposure days, despite the absence of significant histopathological changes. The physiopathological consequences of these changes are not fully understood, but they should raise concerns about the long-term pulmonary effects of inhaled biopersistent NPs such as TiO2.


Assuntos
Perfilação da Expressão Gênica , Pulmão/patologia , Nanoestruturas/toxicidade , Titânio/toxicidade , Aerossóis , Animais , Vasos Sanguíneos/efeitos dos fármacos , Líquido da Lavagem Broncoalveolar , Regulação da Expressão Gênica/efeitos dos fármacos , Exposição por Inalação/efeitos adversos , Linfonodos/patologia , Masculino , Análise em Microsséries , Estresse Oxidativo/genética , Ratos , Ratos Endogâmicos F344 , Titânio/administração & dosagem
10.
Front Psychiatry ; 9: 726, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30662412

RESUMO

Background: Microglia activation contributes to chronic pain and to the adverse effects of opiate use such as analgesic tolerance and opioid-induced hyperalgesia. Both mu opioid receptor (MOR) encoded by Oprm1/OPRM1 gene and toll like receptor 4 (TLR4) have been reported to mediate these morphine effects and a current question is whether microglia express the Oprm1 transcript and MOR protein. The aim of this study was to characterize Oprm1-MOR expression in naive murine and human microglia, combining transcriptomics datasets previously published by other groups with our own imaging study using the Cx3cr1-eGFP-MOR-mCherry reporter mouse line. Methods: We analyzed microglial Oprm1/OPRM1 expression obtained from transcriptomics datasets, focusing on ex vivo studies from adult wild-type animals and adult post-mortem human cerebral cortex. Oprm1, as well as co-regulated gene sets were examined. The expression of MOR in microglia was also investigated using our novel fluorescent Cx3cr1-eGFP-MOR-mcherry reporter mouse line. We determined whether CX3cR1-eGFP positive microglial cells expressed MOR-mCherry protein by imaging various brain areas including the Frontal Cortex, Nucleus Accumbens, Ventral Tegmental Area, Central Amygdala, and Periaqueductal Gray matter, as well as spinal cord. Results: Oprm1 expression was found in all 12 microglia datasets from mouse whole brain, in 7 out of 8 from cerebral cortex, 3 out of 4 from hippocampus, 1 out of 1 from striatum, and 4 out of 5 from mouse or rat spinal cord. OPRM1 was expressed in 16 out of 17 microglia transcriptomes from human cerebral cortex. In Cx3cr1-eGFP-MOR-mCherry mice, the percentage of MOR-positive microglial cells ranged between 35.4 and 51.6% in the different brain areas, and between 36.8 and 42.4% in the spinal cord. Conclusion: The comparative analysis of the microglia transcriptomes indicates that Oprm1/OPRM1 transcripts are expressed in microglia. The investigation of Cx3cr1-eGFP-MOR-mCherry mice also shows microglial expression of MOR proteinin the brain and spine. These results corroborate functional studies showing the actions of MOR agonists on microglia and suppression of these effects by MOR-selective antagonists or MOR knockdown.

11.
Immunity ; 47(2): 349-362.e5, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28801233

RESUMO

In lymph nodes (LNs), dendritic cells (DCs) are thought to dispose of apoptotic cells, a function pertaining to macrophages in other tissues. We found that a population of CX3CR1+ MERTK+ cells located in the T cell zone of LNs, previously identified as DCs, are efferocytic macrophages. Lineage-tracing experiments and shield chimeras indicated that these T zone macrophages (TZM) are long-lived macrophages seeded in utero and slowly replaced by blood monocytes after birth. Imaging the LNs of mice in which TZM and DCs express different fluorescent proteins revealed that TZM-and not DCs-act as the only professional scavengers, clearing apoptotic cells in the LN T cell zone in a CX3CR1-dependent manner. Furthermore, similar to other macrophages, TZM appear inefficient in priming CD4 T cells. Thus, efferocytosis and T cell activation in the LN are uncoupled processes designated to macrophages and DCs, respectively, with implications to the maintenance of immune homeostasis.


Assuntos
Linfonodos/imunologia , Macrófagos/imunologia , Fagocitose , Animais , Apresentação de Antígeno , Apoptose , Linfócitos T CD4-Positivos/imunologia , Receptor 1 de Quimiocina CX3C , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Células Dendríticas/imunologia , Tolerância Imunológica , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptores de Quimiocinas/metabolismo , c-Mer Tirosina Quinase
12.
Mol Neurobiol ; 54(5): 3859-3878, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27405468

RESUMO

Retinoic acid (RA) signaling through retinoic acid receptors (RARs), known for its multiple developmental functions, emerged more recently as an important regulator of adult brain physiology. How RAR-mediated regulation is achieved is poorly known, partly due to the paucity of information on critical target genes in the brain. Also, it is not clear how reduced RA signaling may contribute to pathophysiology of diverse neuropsychiatric disorders. We report the first genome-wide analysis of RAR transcriptional targets in the brain. Using chromatin immunoprecipitation followed by high-throughput sequencing and transcriptomic analysis of RARß-null mutant mice, we identified genomic targets of RARß in the striatum. Characterization of RARß transcriptional targets in the mouse striatum points to mechanisms through which RAR may control brain functions and display neuroprotective activity. Namely, our data indicate with statistical significance (FDR 0.1) a strong contribution of RARß in controlling neurotransmission, energy metabolism, and transcription, with a particular involvement of G-protein coupled receptor (p = 5.0e-5), cAMP (p = 4.5e-4), and calcium signaling (p = 3.4e-3). Many identified RARß target genes related to these pathways have been implicated in Alzheimer's, Parkinson's, and Huntington's disease (HD), raising the possibility that compromised RA signaling in the striatum may be a mechanistic link explaining the similar affective and cognitive symptoms in these diseases. The RARß transcriptional targets were particularly enriched for transcripts affected in HD. Using the R6/2 transgenic mouse model of HD, we show that partial sequestration of RARß in huntingtin protein aggregates may account for reduced RA signaling reported in HD.


Assuntos
Estudo de Associação Genômica Ampla , Doença de Huntington/genética , Doenças Neurodegenerativas/genética , Receptores do Ácido Retinoico/metabolismo , Transdução de Sinais , Transcrição Gênica , Tretinoína/metabolismo , Animais , Sítios de Ligação , DNA/metabolismo , Proteína Huntingtina/metabolismo , Doença de Huntington/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neostriado/metabolismo , Neostriado/patologia , Doenças Neurodegenerativas/patologia , Agregados Proteicos , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Elementos de Resposta/genética
13.
Gut ; 66(10): 1748-1760, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-27371534

RESUMO

OBJECTIVE: Epidemiological and clinical data indicate that patients suffering from IBD with long-standing colitis display a higher risk to develop colorectal high-grade dysplasia. Whereas carcinoma invasion and metastasis rely on basement membrane (BM) disruption, experimental evidence is lacking regarding the potential contribution of epithelial cell/BM anchorage on inflammation onset and subsequent neoplastic transformation of inflammatory lesions. Herein, we analyse the role of the α6ß4 integrin receptor found in hemidesmosomes that attach intestinal epithelial cells (IECs) to the laminin-containing BM. DESIGN: We developed new mouse models inducing IEC-specific ablation of α6 integrin either during development (α6ΔIEC) or in adults (α6ΔIEC-TAM). RESULTS: Strikingly, all α6ΔIEC mutant mice spontaneously developed long-standing colitis, which degenerated overtime into infiltrating adenocarcinoma. The sequence of events leading to disease onset entails hemidesmosome disruption, BM detachment, IL-18 overproduction by IECs, hyperplasia and enhanced intestinal permeability. Likewise, IEC-specific ablation of α6 integrin induced in adult mice (α6ΔIEC-TAM) resulted in fully penetrant colitis and tumour progression. Whereas broad-spectrum antibiotic treatment lowered tissue pathology and IL-1ß secretion from infiltrating myeloid cells, it failed to reduce Th1 and Th17 response. Interestingly, while the initial intestinal inflammation occurred independently of the adaptive immune system, tumourigenesis required B and T lymphocyte activation. CONCLUSIONS: We provide for the first time evidence that loss of IECs/BM interactions triggered by hemidesmosome disruption initiates the development of inflammatory lesions that progress into high-grade dysplasia and carcinoma. Colorectal neoplasia in our mouse models resemble that seen in patients with IBD, making them highly attractive for discovering more efficient therapies.


Assuntos
Adenocarcinoma/fisiopatologia , Colite/fisiopatologia , Neoplasias Colorretais/fisiopatologia , Citocinas/metabolismo , Hemidesmossomos/fisiologia , Integrina alfa6/genética , Integrina alfa6beta4/metabolismo , Mucosa Intestinal/metabolismo , Imunidade Adaptativa , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Animais , Linfócitos B , Membrana Basal/fisiopatologia , Caspase 1/metabolismo , Colite/genética , Colite/metabolismo , Colite/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Citocinas/genética , Células Epiteliais/metabolismo , Hemidesmossomos/genética , Homeostase/genética , Mucosa Intestinal/patologia , Mucosa Intestinal/fisiopatologia , Queratina-18/metabolismo , Queratina-8/metabolismo , Ativação Linfocitária , Camundongos , Muco/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Permeabilidade , Índice de Gravidade de Doença , Transdução de Sinais , Linfócitos T
14.
BMC Bioinformatics ; 17(1): 462, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27846811

RESUMO

We published a new method (BMC Bioinformatics 2014, 15:14) for searching for differentially expressed genes from two biological conditions datasets. The presentation of theorem 1 in this paper was incomplete. We received an anonymous comment about our publication that motivates the present work. Here, we present a complementary result which is necessary from the theoretical point of view to demonstrate our theorem. We also show that this result has no negative impact on our conclusions obtained with synthetic and experimental microarrays datasets.


Assuntos
Algoritmos , Biologia Computacional/métodos , Interpretação Estatística de Dados , Perfilação da Expressão Gênica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Simulação por Computador , Bases de Dados Genéticas , Humanos
15.
Proc Natl Acad Sci U S A ; 113(26): E3619-28, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27233938

RESUMO

Fragile X syndrome (FXS) is caused by the absence of the Fragile X Mental Retardation Protein (FMRP) in neurons. In the mouse, the lack of FMRP is associated with an excessive translation of hundreds of neuronal proteins, notably including postsynaptic proteins. This local protein synthesis deregulation is proposed to underlie the observed defects of glutamatergic synapse maturation and function and to affect preferentially the hundreds of mRNA species that were reported to bind to FMRP. How FMRP impacts synaptic protein translation and which mRNAs are most important for the pathology remain unclear. Here we show by cross-linking immunoprecipitation in cortical neurons that FMRP is mostly associated with one unique mRNA: diacylglycerol kinase kappa (Dgkκ), a master regulator that controls the switch between diacylglycerol and phosphatidic acid signaling pathways. The absence of FMRP in neurons abolishes group 1 metabotropic glutamate receptor-dependent DGK activity combined with a loss of Dgkκ expression. The reduction of Dgkκ in neurons is sufficient to cause dendritic spine abnormalities, synaptic plasticity alterations, and behavior disorders similar to those observed in the FXS mouse model. Overexpression of Dgkκ in neurons is able to rescue the dendritic spine defects of the Fragile X Mental Retardation 1 gene KO neurons. Together, these data suggest that Dgkκ deregulation contributes to FXS pathology and support a model where FMRP, by controlling the translation of Dgkκ, indirectly controls synaptic proteins translation and membrane properties by impacting lipid signaling in dendritic spine.


Assuntos
Diacilglicerol Quinase/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Neurônios/enzimologia , Idoso , Animais , Espinhas Dendríticas/enzimologia , Espinhas Dendríticas/metabolismo , Diacilglicerol Quinase/genética , Diglicerídeos/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/enzimologia , Síndrome do Cromossomo X Frágil/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Neurônios/metabolismo , Transdução de Sinais
16.
Arthritis Rheumatol ; 68(8): 1839-48, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26882526

RESUMO

OBJECTIVE: While the regulatory role of individual microRNAs (miRNAs) in rheumatoid arthritis (RA) is well established, the role of DICER1 in the pathogenesis of the disease has not yet been investigated. The purpose of this study was to analyze the expression of factors involved in miRNA biogenesis in fibroblast-like synoviocytes (FLS) from RA patients and to monitor the arthritis triggered by K/BxN serum transfer in mice deficient in the Dicer gene (Dicer(d/d) ). METHODS: The expression of genes and precursor miRNAs was quantified by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). MicroRNA macroarray profiling was monitored by qRT-PCR. Cytokines were quantified by enzyme-linked immunosorbent assay. Experimental arthritis in mice was achieved by the transfer of serum from K/BxN donors. Apoptosis was quantified using an enzyme-linked immunosorbent assay. RESULTS: We found decreased DICER1 and mature miRNA expression in synovial fibroblasts from RA patients. These cells were hyperresponsive to lipopolysaccharide, as evidenced by their increased interleukin-6 secretion upon stimulation. Experimental serum-transfer arthritis in Dicer(d/d) mice confirmed that an unbalanced biogenesis of miRNAs correlated with an enhanced inflammatory response. Synoviocytes from both RA patients and Dicer(d/d) mice exhibited increased resistance to apoptotic stimuli. CONCLUSION: The findings of this study further substantiate the important role of DICER1 in the maintenance of homeostasis and the regulation of inflammatory responses.


Assuntos
Artrite Reumatoide/genética , RNA Helicases DEAD-box/genética , Ribonuclease III/genética , Sinoviócitos/fisiologia , Animais , Apoptose , Regulação da Expressão Gênica , Humanos , Inflamação/genética , Camundongos
17.
PLoS One ; 10(11): e0141740, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26524763

RESUMO

Eosinophils are leukocytes that are released into the peripheral blood in a phenotypically mature state and are capable of being recruited into tissues in response to appropriate stimuli. Eosinophils, traditionally considered cytotoxic effector cells, are leukocytes recruited into the airways of asthma patients where they are believed to contribute to the development of many features of the disease. This perception, however, has been challenged by recent findings suggesting that eosinophils have also immunomodulatory functions and may be involved in tissue homeostasis and wound healing. Here we describe a transcriptome-based approach-in a limited number of patients and controls-to investigate the activation state of circulating human eosinophils isolated by flow cytometry. We provide an overview of the global expression pattern in eosinophils in various relevant conditions, e.g., eosinophilic asthma, hypereosinophilic dermatological diseases, parasitosis and pulmonary aspergillosis. Compared to healthy subjects, circulating eosinophils isolated from asthma patients differed in their gene expression profile which is marked by downregulation of transcripts involved in antigen presentation, pathogen recognition and mucosal innate immunity, whereas up-regulated genes were involved in response to non-specific stimulation, wounding and maintenance of homeostasis. Eosinophils from other hypereosinophilic disorders displayed a very similar transcriptional profile. Taken together, these observations seem to indicate that eosinophils exhibit non-specific immunomodulatory functions important for tissue repair and homeostasis and suggest new roles for these cells in asthma immunobiology.


Assuntos
Asma/genética , Eosinófilos/citologia , Síndrome Hipereosinofílica/genética , Transcriptoma , Adulto , Idoso , Asma/sangue , Eosinófilos/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Humanos , Síndrome Hipereosinofílica/sangue , Masculino , Pessoa de Meia-Idade
18.
Dis Model Mech ; 8(6): 623-34, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26035870

RESUMO

Partial monosomy 21 (PM21) is a rare chromosomal abnormality that is characterized by the loss of a variable segment along human chromosome 21 (Hsa21). The clinical phenotypes of this loss are heterogeneous and range from mild alterations to lethal consequences, depending on the affected region of Hsa21. The most common features include intellectual disabilities, craniofacial dysmorphology, short stature, and muscular and cardiac defects. As a complement to human genetic approaches, our team has developed new monosomic mouse models that carry deletions on Hsa21 syntenic regions in order to identify the dosage-sensitive genes that are responsible for the symptoms. We focus here on the Ms5Yah mouse model, in which a 7.7-Mb region has been deleted from the App to Runx1 genes. Ms5Yah mice display high postnatal lethality, with a few surviving individuals showing growth retardation, motor coordination deficits, and spatial learning and memory impairments. Further studies confirmed a gene dosage effect in the Ms5Yah hippocampus, and pinpointed disruptions of pathways related to cell adhesion (involving App, Cntnap5b, Lgals3bp, Mag, Mcam, Npnt, Pcdhb2, Pcdhb3, Pcdhb4, Pcdhb6, Pcdhb7, Pcdhb8, Pcdhb16 and Vwf). Our PM21 mouse model is the first to display morphological abnormalities and behavioural phenotypes similar to those found in affected humans, and it therefore demonstrates the major contribution that the App-Runx1 region has in the pathophysiology of PM21.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/genética , Monossomia/genética , Deleção de Sequência/genética , Animais , Animais Recém-Nascidos , Comportamento Animal , Peso Corporal , Cromossomos Humanos Par 21/genética , Análise por Conglomerados , Subunidade alfa 2 de Fator de Ligação ao Core/deficiência , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Modelos Animais de Doenças , Comportamento Exploratório , Feto/anormalidades , Feto/patologia , Dosagem de Genes , Regulação da Expressão Gênica no Desenvolvimento , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Aprendizagem em Labirinto , Memória , Camundongos , Anotação de Sequência Molecular , Atividade Motora , Análise de Sequência com Séries de Oligonucleotídeos , Software , Aprendizagem Espacial , Transcriptoma/genética
19.
Exp Eye Res ; 135: 37-46, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25912194

RESUMO

The lack of plasticity of neurons to respond to dietary changes, such as high fat and high fructose diets, by modulating gene and protein expression has been associated with functional and behavioral impairments that can have detrimental consequences. The inhibition of high fat-induced rewiring of hypothalamic neurons induced obesity. Feeding rodents with high fructose is a recognized and widely used model to trigger obesity and metabolic syndrome. However the adaptive response of the retina to short term feeding with high fructose is poorly documented. We therefore aimed to characterize both the functional and gene expression changes in the neurosensory retina of Brown Norway rats fed during 3 and 8 days with a 60%-rich fructose diet (n = 16 per diet and per time point). Glucose, insulin, leptin, triacylglycerols, total cholesterol, HDL-cholesterol, LDL-cholesterol and fructosamine were quantified in plasma (n = 8 in each group). Functionality of the inner retina was studied using scotopic single flash electroretinography (n = 8 in each group) and the individual response of rod and cone photoreceptors was determined using 8.02 Hz Flicker electroretinography (n = 8 in each group). Analysis of gene expression in the neurosensory retina was performed by Affymetrix genechips, and confirmed by RT-qPCR (n = 6 in each group). Elevated glycemia (+13%), insulinemia (+83%), and leptinemia (+172%) was observed after 8 days of fructose feeding. The cone photoreceptor response was altered at day 8 in high fructose fed rats (Δ = 0.5 log unit of light stimulus intensity). Affymetrix analysis of gene expression highlighted significant modulation of the pathways of eIF2 signaling and endoplasmic reticulum stress, regulation of eIF4 and p70S6K signaling, as well as mTOR signaling and mitochondrial dysfunction. RT-qPCR analysis confirmed the down regulation of Crystallins, Npy, Nid1 and Optc genes after 3 days of fructose feeding, and up regulation of End2. Meanwhile, a trend towards an increased expression of αA- and αB-crystallin proteins was observed at day 8. Our results are consistent with early alterations of the functioning and gene expression in the retina in a pro diabetogenic environment.


Assuntos
Diabetes Mellitus Experimental , Dieta , Carboidratos da Dieta/administração & dosagem , Frutose/administração & dosagem , Retina/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Animais , Glicemia/análise , Colesterol/sangue , Cristalinas/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Eletrorretinografia , Estresse do Retículo Endoplasmático/fisiologia , Fator de Iniciação 2 em Eucariotos/fisiologia , Frutosamina/sangue , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Insulina/sangue , Leptina/sangue , Masculino , Ratos
20.
PLoS Genet ; 11(3): e1005062, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25803843

RESUMO

The trisomy of human chromosome 21 (Hsa21), which causes Down syndrome (DS), is the most common viable human aneuploidy. In contrast to trisomy, the complete monosomy (M21) of Hsa21 is lethal, and only partial monosomy or mosaic monosomy of Hsa21 is seen. Both conditions lead to variable physiological abnormalities with constant intellectual disability, locomotor deficits, and altered muscle tone. To search for dosage-sensitive genes involved in DS and M21 phenotypes, we created two new mouse models: the Ts3Yah carrying a tandem duplication and the Ms3Yah carrying a deletion of the Hspa13-App interval syntenic with 21q11.2-q21.3. Here we report that the trisomy and the monosomy of this region alter locomotion, muscle strength, mass, and energetic balance. The expression profiling of skeletal muscles revealed global changes in the regulation of genes implicated in energetic metabolism, mitochondrial activity, and biogenesis. These genes are downregulated in Ts3Yah mice and upregulated in Ms3Yah mice. The shift in skeletal muscle metabolism correlates with a change in mitochondrial proliferation without an alteration in the respiratory function. However, the reactive oxygen species (ROS) production from mitochondrial complex I decreased in Ms3Yah mice, while the membrane permeability of Ts3Yah mitochondria slightly increased. Thus, we demonstrated how the Hspa13-App interval controls metabolic and mitochondrial phenotypes in muscles certainly as a consequence of change in dose of Gabpa, Nrip1, and Atp5j. Our results indicate that the copy number variation in the Hspa13-App region has a peripheral impact on locomotor activity by altering muscle function.


Assuntos
Síndrome de Down/genética , Monossomia/genética , Atividade Motora/genética , Força Muscular/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Cromossomos Humanos Par 21/genética , Modelos Animais de Doenças , Síndrome de Down/fisiopatologia , Metabolismo Energético/genética , Fator de Transcrição de Proteínas de Ligação GA/genética , Humanos , Camundongos , Mitocôndrias Musculares/genética , Mitocôndrias Musculares/patologia , ATPases Mitocondriais Próton-Translocadoras/genética , Monossomia/fisiopatologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Proteínas Nucleares/genética , Proteína 1 de Interação com Receptor Nuclear
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...